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Abstract

Averages on the sphere about x in R? and on the rim of the cap about x in S?~! and their
iterates are shown to be smoother than f. Furthermore, their approximating properties satisfy
a strong converse inequality of type A when dealing with multivariate approximation (¢ >2 in
case of R? and d >3 in case of S?~!). These results are in contrast to the classical results on R
or T for which the situation is completely different.
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1. Introduction

For a function f(x) on R or T, i.e. single variable, the average
Af(x) =5 (f(x+ 1) +f(x 1)) (L.1)

approximates f(x) when f(x)e C(R)(C(T)) or L,(R)(L,(T)), I<p<co; and the
rate of approximation relates to the modulus of smoothness w?(f, z)p by

Su10t||f —Aufll, = (f,1),~ inf([lf —qll, + 2(g"11,)- (1.2)

O<u<
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It is well-known that A, f and its iterates A" / are not in general smoother than f(x)
and that the supremum on the left of (1.2) cannot be dropped.

We will show that some multivariate analogues which are widely used behave
better and the behaviour improves with the dimension.

For f(x), xeR? (or T?) we define

- b o X) =
= | 0 e Vil = (1.3

with do being the Lebesgue measure on the sphere > ,.
For f(x), xe §%' = {xeR%:|x| = 1}, we define

1
Sif = | FO) . S(x) =1, (14
l ) I’i’l(f) y,={yy-x=cos t} ) t( ) )
where dy is the Lebesgue measure on the rim of the cap of sphere y,.
It turns out that for d>2

VS () =S Ol rey = lclszd (1S = gllz, ey + 2NlAGI] 1, () (1.5)

and for d>3

1S C) =S Ollysey > ot (LF = gllyioon + 2Bl sen). (16)

where A and A are the Laplacian and the Laplace-Beltrami (the tangential
component of the Laplacian on S9~1), respectively.

We note that in (1.5) and in (1.6) proved here, there is no supremum on the left-
hand side as is common in texts on the subject and as is necessary in the one-
dimensional case. Equivalences (1.5) and (1.6) constitute strong converse inequalities
of type A in the sense of [Di-Iv], but in one dimension (1.2) is a strong converse
inequality of type D in that scale.

We show further that V)" f and S}’ f are smoother than f, and the improvement
depends on m, p (of L,) and the dimension 4. In fact, the higher the dimension, the
bigger the improvement in smoothness of SV f and V" f over that of /. We note
that in one dimension an improvement of smoothness of 4! f is not the case for
any p or m.

For the proof we will need and show that

( )

WAV Nz, rey <=5 1], (reys - for d=2 (1.7)

and
AT A1l s <2 fll 500y for @23, (18)
where s(m):0(1)7m—>oo.

We note that for 47" we cannot guarantee the existence of a derivative, and hence
there is no hope for an analogue of (1.7) and (1.8).
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The technique we use relies on multipliers. The smoothness of functions on S9!
will also be related to a new concept introduced recently in [Di-I].

We hope the present results will be helpful in other investigations, though we
cannot identify the optimal improvement in smoothness except in the L, case.

2. Smoothness of S” f in Ly(S?!)

We first show the smoothness of S f in L,(S9!), which is better than the result
which we get for L, in the next section (see also Section 7) when we substitute p = 2.
The results in this section will serve as a model and encouragement for later sections

and some of the estimates will be used later.
We have (see for instance [Li-Ni,Ru,Wa-Li, (12.4.6), p. 61])

0 (4) m 0
Sir=3 (Pkp(ﬁ%(f)@) P =30 (eos0)" Pi(), 2.1)
= k k=0

where P,(j') (x) is the ultraspherical (Gegenbauer) polynomial of order k, 4 =432,

Py (f) is the projection of f on Hy = { : Ay = —k(k +d — 2y}, Af(x) = Af(i

1]

N———

(the Laplace-Beltrami operator) and A is the Laplacian. As both S}’ and A are
multiplier operators, we have formally

C o, & P,@ (cos 0) "

“ASY S~ k(k+d =2) | == | Pi(f)- (2.2)
=1 p(1)

Theorem 2.1. For fe€L,(S7"), d>3, 0<%, and m>*5 we have

A Qm ¢
IASG f||2<?||f||2» (23)

with C independent of 0 and f .

Proof. Using [Sz, (7.33.6)], we have (recalling that there P}(1) = (*%"))

(2)

P 0 2

00 (cos0)) = L < Comingi 07 1),
P

and hence (recalling 4 = %) for k0>1, 0<%, we have

2 (2) m 2,@ m
|0°k(k +d —2)(Q)" (cos 0))"| < Cr(k0)™ 2
which is bounded for %m}Z or m}ﬁ. For k<1
102k (k +d — 2)(Q\) (cos 0))"| < C,

which completes the proof. [
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Corollary 2.2. For feL,(S7 "), 0<0<Z%, d>3 and m; >
" C
ngadtan S() ]szgEHfHZv (24)
with C independent of 0 and f .

Proof. We have for smooth f
m 2 m m
H gradtan So ]f‘ ’2: <gradtanS0 lfa gradtan S0 lf>
== ASPLD <[|AST LA
c, ., :
< g /1Ll
and as the last result is independent of the smoothness of 1, (2.4) follows. O

We can also prove

Theorem 2.3. ForfeLz(S"’l), d>3,0<0<3, and m big enough

|as ), <2

(vales (2.5)
where ¢(m) = o(1) as m— 0.
We need the following lemma, which will also be used later.

Lemma 2.4. For n0<1,n>1,0<0<% and /. = 5=

Py (cos 0)
PY(1)

n- .50 2 22
_ -<1- 0°. 2.
a—1"" 2 2d-1)" (26)

= [0 (cos 0)| <1

Forn0=1,n>1,0<0<% and i = %
109 (cos 0)| <a<1 (2.7)
with o independent of n and 0 (but depending on the fact that n0>=1 and on 1).

Proof. To show (2.6) we integrate by parts and use [Sz, (4.7.14), p. 82] with 1 = 4%2
to obtain for n>1

1 — QW (cos 1) / d— 0\ (cos u) du

d 2) 2
n+ / Q “ (cosu)sinu du

n—1

(n+d—2) U . /" (1) . ]
= 7 sin u du — 1— cosu) |sinudu].
d*l ) 0 ( anl ( ))
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For n=1 Q,(f)(cos 0) = cos 0 = 1 — 2sin> . Otherwise, we use the mean value
theorem to obtain

; -1 -1 )
0<1 — Q,(ffll)(cos u) = (1 — cosu) (n g”jld ) Q,SAf;)(cos é)
n—1)m+d-1)
< _
< (1 —cosu) d51 ,
and hence
0 2
U . <(n—1)(n+d—1)(l—cos@)
/0 (1 0,7 (cosu))smudu\ P > .
For nf <1 we have %ﬁdq) (1 —cos#) <1, and hence
0<1— QMSmZQS Qw(cos 0)
d—1 2"
nn+d-2) . ,0
<1 -2 1F Hgip?o
1 T sin” 5
2
<i--"anlaio 2 ey

d—1 27 (d-1)m?
For nf>1, we use the identity [Sz, (4.10.3), p. 97]

n =1 rr
0¥ (cos ) = (/0 sin®* 1o dqo) /0 (cos 0 4 isin 0 cos ¢)"sin** o do

T —1 n
= (/ sin®* 1o dq)) / Re(cos 0 + isin 0 cos ¢)"sin** o dg.
0 0

(2.8)
For 0y <0<m — 0y we find 0 such that

o n
1
/sm (pd(p// sin?* Lo do = -,
0 0 8

and estimate for n>2

10\ (cos 0)| < 143 | cos 0+ isin 0 cos §|"
—143(1 — sin’0'sin’5)"?
<L14+3(1 —sin’0sin’)
<1- 3sm 0 sin’,

and for n =1 Q’(cos ) = cos <cos Oy = | — 2sin’ 9“ , and hence (2.7) is valid for
Op<0<m — 0 (not only for 0<%) and « depending on 00 and / (but not yet on n6).
We choose 8y so that cos 6,>=0.9 (for example) and note that Fejer showed [Sz,

(6.6.6), p. 138] that the zeros of P (cos 0) satisfy

v—(1-21)/2 v+i—%
L P .
n+A m<by< n-+ 24 T
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and hence the next extremum of P\’ (cos 0) after 0 = 0 is at a zero of Pn”l1 (cos0)i.e.

1
14/t
2 1 _d+l 1d+l
0\n-1+2z+2” S d-T S,

As the |P,1 (cos 0)| at the extrema are descending for 0<O<7 (increasing in x =
cos ) [Sz, (1), pp. 168-169], we have to check the values only in the range
1<On<=—=* dH) . Using (2.8), we note that for n<(”lJrl and tan”! sm:;% 2o
larg(cos 0 + isinfcos ¢)’| <3, and hence Re(cosO +isin6cosp)’>0. Clearly,
tan~! (%) <tan~! 9°°S‘”<9C°w and hence for M<ﬂ or cosp<

092:1[0<09(1+1) =097

S d R
sin“ o do sin“ " odp=p>0.
®o 0

with f depending on 4 only, we have for Gng(‘lzl)”, using (2.8)

d+1 We choose ¢, such that cos oy = 0.9 -+ 1 and as

0/(cos 0)> — (1 — ) max|cos 0 + isin Osin | > — 1 + f,

and hence Qﬁi)(cos 0)= — 1 + f at the first extremum after 6 = 0. Therefore, for
nf=1, 0<0y<3

2 1
(%) <max(1—-—S——1-p) =a<l. O
|0V (cos 0)] de( 3 T /3) o<

Proof of Theorem 2.3. For nf<1 we use (2.6) of Lemma 2.4 to estimate the
coefficients

0*n(n+d — 2)(1 - m(”e)z)mg - 1)02n2(1 B nz(dz_ : <n0>2)m
<Ci:0(l)7 m— 0.
m

For nf>1 we write m = my + mp where m, 2% from Theorem 2.1, and use (2.7) of
Lemma 2.4 to get o = o(1), my— oo, which concludes the proof. [

3. Smoothness of S f for fe L,(S!), 1<p<

In this section we exhibit the smoothness of Sj'f" for some power m.

z<[2] 3)

Theorem 3.1. For feL,(S9"), 1<p< o, d>3 and m> we have

IASg £1], < € max <027( )>||f|| (3.1)
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Remark 3.2. Theorem 3.1 does not contain Theorem 2.1 as the condition on m is
harsher. In Section 7 we will improve the condition on m to be close to that in
Theorem 2.1 for p close to 2.

We need the following lemma:

Lemma 3.2. For integers j,k and m and for 0 <0<7% we have

i ma
i A m C0’/(k0) for kO0>=1,
’A <Q’“ (COSG)) \<{ng for k<1, (3-2)

where C is independent of k and 0 but may depend on j,A and m, and where
Aaj = &ak =g — ag, NMag = A(Aj_lak).

Proof. Using Leibnitz’s theorem for differences, we only have to show (3.2) for
m =1 and all j. This result follows from classical estimates and was essentially
demonstrated in [Da-Wa-Yu, (21)]. Forj =0, m =1 (3.2) is in [Sz, (7.33.6), p. 170].
For o, 8 one uses [Sz, (4.5.4), p. 71] to obtain for Q;{“'ﬁ)(x) =P “ﬂ)( )/ PP (1)

Ck+o+p+2)

(a+1,8)
200+ 1) 9 ")

O (x) = 0P (x) = —(1 — x)

and by induction
i (o ! ’ o+
ATQEP(x) = 3 (1= x) P (k) QP (),
=

where P, (k) are polynomials of degree 2/ — j in k. From the above, using o = 1 —%

with [Sz, (8.21.18), p. 196] for k0>1 and |Q; (47.6) (x)| <1 for kO<1, we complete the
proof of (3.2). [

Remark 3.3. For 0>75
So.f (x) = Sz—0/(x0)
with x, the antipodal of x, that is the other point of intersection of S?~! with the line
connecting x with the center. Observe that
Sy f(x)=8",f(x) for even m
and

ST f(x) = S" ,f(x0) for odd m.

Proof of Theorem 3.1. In view of Remark 3.3 we have to prove our result only for
0<(9<72Z It was shown in [Bo-Cl] that the Cesaro summability of order r satisfies

(s#), for any r>432 (and actually for r> (d — 2)|; —;]). We will

l‘l
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use the well-known result relating

—ASPf~ Z k(k 4 d —2)(QY) (cos 0))" Py(f) (3.3)

k=1
to
—PASI f = 0 i A"H{k(k +d— 2)<Q](j)(cos 9)>m} (k * r)a};(f)
= r

(which follows from the identity Pi(f) = A"“(kf")aj;( f,x), using summation by

parts) if the latter is convergent termwise in norm. It is therefore sufficient to show
that

ezi

k=1

ArH{k(k—i—d 2)<Q( (cos 0))’”}‘ <k:—r> <G

or

S =6
k=1

kr+2—1 < C2

AT (Q,E,}“) (cos 0))”1

for i = 0,1,2. We separate the sum S by S = S + S, where S| sums on k satisfying
k0>=1 and S, when kO0<1.
Using Lemma 3.2, we have

Sl = C% 2 m
k92>:1 ko)

< C402 Amtr+1—i § : kr+2—i—/1m.
kO=1

r+17ikr+27i

When r+2 —i— im< — 1, that is, ’”<m or 2( )<m S 1s bounded.
To estimate S, we write

) r+1—i )
S, < Cs0? Z (E) k271 < Co0? Z k<Cs. 0
kO0<1 kO<1

Perhaps as an intuitive incentive to reduce m (but certainly not a proof) we observe
that the same method used to prove Theorem 3.1 yields:

Theorem 3.4. For feL,(S ') d>3 and m> ’+2/)+1 we have

A m 1 1
I|A” S f1],,< C max (W’ m) 1A11,- (3.4)

We will not elaborate on the proof of Theorem 3.4 as it follows almost word for
word that of Theorem 3.1.
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Remark 3.5. Forl<p< o andfe LP(S”H) we could have now deduced for 0<0<3

1ASG A1, <5111,

using Theorems 2.1, 3.1 and the Riesz—Thorin interpolation theorem. However, the
result is valid for p = 1 and oo as well, as will be shown (with substantial additional
work) in Section 4.

4. Estimate of Sj'f for high power m
The result of this section is the following theorem.

Theorem 4.1. For feL,(S9"), 1<p< oo, d>3 and m big enough

~ 1 1
1ASG f1], <&(m) maX<027( 0 >||f|,,7 (4.1)
where e(m)—0 as m— 0.

Proof. It is sufficient in view of Remark 3.3 to show (4.1) for 0<0<7%. We write,
following the proof of Theorem 3.1,

—0?ASy 7922 A’“( k+d72))(Q/(f)(cos 9))m)<k+r>62(f)a

r

and we have to show

S:()Zi

k=1

k"<e(m), m— 0.

A (k(k +d = 2)) (0 (cos )"

We set

2

S Z S(i).

i=0

2
)0y N A9 (cos 0)”

0
i=0 k=

We estimate S(0), and estimates for S(1) and S(2) are almost identical. We write
now, choosing />3 > (d+5 and />=r+1 say /= de([ (d+5>} + 1, [dgz] + 2)
(which is perhaps 1av1sh),

m—/,
S(0)< C(d)60? Z +Z { Ay (0 )(Oggﬁl’Q;fﬁs(cos@)D k’”}

lsks k>

ES] +S2,
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where

) /
A (0) = max{ 11 ‘A/"Q,({A_gs(cos O[0<ji<r+ 1, ji=r+ 1,0<s<r}.
1<i</ i=1
For S| we note that, using the estimate in Lemma 3.2, we have
Sl < CQZ Z mr+19r+l(Bk(g))mf/kr-ﬂ
1<k<}
< C92 Z kmr+1(ke)rﬁLl(Bk(g))mf/’
1<k<l

=0

where Bi(0) = max 1 |Q,(izv(cos 0)]. Using (2.6) of Lemma 2.4, we have for m>2/
r+ ’

0<s<
(we note that using (2.7) the range in which (2.6) is valid can be extended to include
k+s<k+r+1)

mr+l (kg)r-‘rz (Bk(e))m—f %l

m’

and hence

1<k<y

To estimate S, we use the estimate in Lemma 3.2 and write

01’+1
Sy <COPS " [ B (0)" K+ —.
2 z:l [ k( ) ] (k@)’“/
k>§
Using (2.7) of Lemma 2.4,

m’“QEﬁS(cos 0)"" =0(1) as m— oo and k0>1 and s<r+ 1

and hence for / chosen earlier S, = o(1), m— oo in a manner that is dependent only
on / (ris fixed by Z as well). O

5. The equivalence result and other corollaries

As a corollary of the results in Sections 3 and 4 we will obtain the equivalence
result or strong converse inequality of type A (in the terminology of [Di-Iv]).

Theorem 5.1. For f€L,(S?™"), 1<p< o0, d>3 and 0<0<Z%

H&f—fmzhymf—mu+9ﬂ5wﬁEﬁlﬁfb7 (5.1)

where the infimum is taken on sufficiently smooth g.
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Remark 5.2. The common form of the relationship between Sy /' — f and K(f, Gz)p is
sup [1So.f = f1l,~ inf([./ = gll, + 2[|Ag]],), (5:2)
<t

and it is the dropping of the supremum on the left of (5.2) which defined smoothness
in all previous papers on the subject (scores of them) that is a highlight in this paper.

To prove (5.1) we follow the method of [Di-Iv, Section 4] but for that we need in
addition to Theorem 4.1 the following improved Voronovskaja-type result for Sy.

Lemma 5.3. For g such that Nlge L,(S*~"), 1<p< oo, for i =0,1,2 and Alge C for
p = o and for 0 satisfying 0<0<3

1S0g — g — «(0)Agl|, < CO%|A%]], (5:3)

with 0< A0* <a(0)<BO* and A, B, C independent of 0 and g.
Proof. Using Theorem 2.1 of [Di-Rull] for ge C*>(S%° 1),

d—1 0 .
S()(gvx) - g(x) - 22((61_21))/2/0 (Sindtt)d_z /(rx(r) Ag(y) dO'(y), (54)

where o,(t) = {y;|y| = 1, cost<x-y<1}. Repeating this process as was done in
Lemma 4.2 of [Di-Rull], we obtain (5.3) for ge C*(S9"). Using density of C*(S9")
in the space for which Alg for i = 0,1, 2 are in L,,1<p<oo andin C for p = o0, we
complete the proof. [

Proof of Theorem 5.1. We follow [Di-Iv, Section 4]. For g satisfying g, AgeLp, or g,
AgeC (or p = ) (5.4) implies

1Sog — gll, < CO*[|Ag]l,,
and as Sy is a contraction on L,, I <p< oo, we have the known direct result

IS0/ = /1l,<CK(f.0%),.

To prove the converse (strong converse inequality of type A in the terminology of
[Di-Iv]), we use for g of (5.3) S f with m to be chosen. Clearly,

Lf =gll, = lf = Sg' fll,<mllf = Sofll,-

As we established that S}’ / and AS@” f arein L, for m big enough, it remains to show
that for some m

O*|ASy f1l, < CILf = Sofll,- (5:3)

To prove (5.5) we first observe that using Theorem 3.1 with m >4(d#, ASK f and

(ST

A2Sp f are in L, 1<p<co if f is. Furthermore, if m>% and feL, (S,
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A feL., (S "), and this implies that A2f is continuous. We now choose m =
d d
M -+ m; where m; (rm 22[2]+3) is such that for all feL,

d-2 d-2

A
1ASE" Fll, <5

=l (56)

with 4 and C of Lemma 5.3. The possibility of such a choice is guaranteed by
Theorem 4.1. We use Lemma 5.3 on g = S}’ / and obtain

1(O)ASy f1l,< 11551 = f1I, + CO*|A>Sg 1]

A A om—my
<m||50f—f|\p+—92\|ASo Ay
2 m Agz m—mj my
<ml|[Sof —fll, +5 OHAS [, + 5 IASg=™ (S5 = D 1l,

<m||So.f —fl| +5C1II(SZ“ - Dfll +502|\A56"f||,,,

with Cy, the constant from Theorem 3.1. Use of the triangle inequality will complete
the proof. [

We also have as a corollary of the above and Theorem 10.4 of [Di-Iv]:

Corollary 5.4. For feL,(S"), 1<p< o0, d>3, 0<0<% and integer /
1(So = 1) f1l,~ inf(llf — gll, + 0¥ (| gl|,) = K (f, A, 07),. (5.7)

Proof. We just have to verify that Sy satisfies the conditions (for Q,) in Theorem
10.4 of [Di-lIv], which it does. [

6. The result on R or T
We define V, f for f on R? or T by

Vilfox) = e

5T o S+ 1y)da(y), (6.1)

where S9! is the unit sphere in R, |S?~!| is its measure, and the integration do(y) is
on the sphere. It is well-known that ¥, is a contraction on L,(R?) or L,(T%),
1<p<oo. We will deal with R? and show how to copy the results to T¢.

Using [St-We, p. 154], we have for xe R/ and v = ﬂ

877 10) = (- 4o - (0 (5) 220 ), (62)

(et x)’
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where
[y = | fe™™ dy.
Rd
We can now prove the following result about the smoothness of V, f.
Theorem 6.1. For f e Ly(RY), d>2 and m>*;

- C
1AV Sl <5 [1/1]2- (6.3)

Proof. Using (6.2), it is sufficient to show that for v = d%z

r(%) J,(2ntx])

2 2
t ;
=y

= I(m,v,t|x|)

is bounded. For ¢|x|<1 I(m,v,t|x|) is bounded by 1 which follows from the
definition of J,(u) [St-We, p. 154], as

d
5 g
d—1 1 /1
I'i——|I'{=z )"~
(5)rC)
For f|x|>1 we use Lemma 3.11 in [St-We, p. 158] to obtain

L@rx)|_ €

T -

(1= gs = 1.

and I(m, v, t|x]) is bounded if 2 — m(v +3) <0 or m>7%4. O

Theorem 6.2. For feLp(Rd), d>=2 and m>2(jf12>

1AV fll, <z 11711, (6.4)

Proof. A simple change of variables implies that it is sufficient to prove (6.4) for
t = 1. Furthermore, it is sufficient to prove (6.4) for p = 1, which implies (6.4) for
p = oo by duality, and for 1 <p < oo by the Riesz—Thorin Theorem. To prove it now
(for L;(RY)) it is sufficient to show that

r(%) J,27x]))
—

m

[ = I(m,v, |x[)
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is in L;(R?) and is a Fourier transform of an element in L; for the given m. For any
mand |x|<1, I(m,v, |x|)<1 To show that I(m, v, |x]|) is in L, it suffices to show for
|x|>1 |I(m v, |x]) |< 7 with o> 0. Following Lemma 3.11 of [St-We, p. 158], this
estimate is achieved f’or d+2<m(%) or for m> ((;”12 Therefore, I(m, v, |x|) is the
Fourier transform of a bounded continuous function. To show that it is a Fourier
transform of a L; function it is sufficient to show that d + 1 derivatives of I(m, v, |x|)

are bounded in L;. Using the recursion relation

% W J(u) = —u"Jyp1 (0)

(see [St-We, p. 153]) and the split used above, we obtain that the derivatives of
I(m,v,|x|) are in L, and hence its inverse Fourier transform is in L. (Actually, it is
continuous and of support in |u| <m.) We have ||Z ' (I(m,v, |x|))||, <C, and hence
our result for L; and ¢ = | from which (6.4) follows. O

Remark 6.3. We do not know how near the power m required in Theorem 6.2 is to
the optimal for the space L; or L, but see also Theorem 7.7.

We will now give the following crucial estimate.

Theorem 6.4. For feL,(R"), d>2 we have

vy 71l <2 71, (65

with e(m)—0 as m— 0.

Proof. As discussed in the proof of Theorem 6.2, it is sufficient to show that

» |x|2<r(%)fv(2”|x))m
(m]x[)’

To show the latter, we have to show that

po o (FOL i)
(m]x[)’

for the derivatives D* where |u|<d + 1 (including 4 =0 and v = %) For |u| =7,
/<d + 1 set the domain

1
D, = {x: |x|<—}
mi

5
with o to be chosen (o =1 (—) will do).

-0 as m— .
Li(RY)

-0 as m— w

1
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: d+1
We now write for 2d+3<oc<2

ootz

C 1 ‘.“‘
<—>m"|<—> —o(1), mooo, |u<d+1,

Ll(Da()

m(d+2)a m*
using the recursion relation 4 (r7'J,(1)) = —t7"J,;1(1) and the trivial estimate
Jui1(t) = O("1), 1-0. For -L<|x|<1 we use the estimate (v = 432)
r d m—{
I =mh L)‘,J‘,(znm)
(|x[)
m—{
d 1 _
< mh r'@) o2l (] — sz)% s
r(=N\p (L) /-
2 2

< m |} (cos 2mm ™8 + 1) }"1_/7

F(d) 5 d-3)/2 1"(1) 1 d-3)/2
where ———2L—~ [° (l—sz)( 2 gy =1 (recall ——2 (1 )( )2 g,
; g : T

Tl’;erefore,

I<m(1 = sin®(am=6))"~".

We choose 7 to be any fixed number / >2
/- [ d+2] 1)
We can now write, as sin2u>2721—'§2 for u<?,

I<m(1 — 48°m=2y"~"

) from Theorem 6.2. (For example

If a<d, I =0(1) as m— 0.
To complete the estimate, it is now sufficient to observe that
I(x,v) = ‘ re)
(mlx])"
For |x|>A with A big enough that estimate follows from [St-We, Lemma 3.11,
p. 158]. For 1<|x|<4 |[(x,v)| achieves a maximum at xo as it is continuous, but for
any xo#0 B = |I(xo,v)| <1 using the representation in [St-We, pp. 153-154].

(2] x])

<p<l for |x|=1 v=42

2d
We now choose 2izilz<°‘<2v and clearly o = Z(ﬁ) will do. This completes the

2
proof. [

Let us now transfer the theorems of this section to L,(T 4.
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Theorem 6.5. In Theorems 6.2 and 6.4 L,(R?) can be replaced by L,(T?). In Theorem
6.1 Ly(R?) can be replaced by Ly(T?).

Proof. As Theorems 6.2 and 6.4 are valid for L. (RY), they are valid for
L. (T since feL,(TY) can be extended to feL, (R?) by periodicity
without changing the norm. Being valid for Lgc(Td), Theorems 6.2 and 6.4 follow
using duality for L;(T%), and using the Riesz—Thorin theorem for LP(T"), l<p<oo.
For L, the result (Theorem 6.1) follows as we have essentially the same
multipliers. [

Corollary 6.6. For feL,(R?) or feL,(T"), 1<p< o we have

1Vef = fllp= inf([lf —gll, + 2[1Agll,). (6.6)

Proof. The proof follows that in Section 5 where we use iterations of [Di-Rul,
Theorem 2.1] as seen in the Voronovskaja-type result [Di-Rul, (3.4)] in combination
with Theorems 6.2 and 6.4. As the technique is almost exactly the same, we omit the
details. [

7. Smoothness of Sy / and V, f

It is evident that the results on smoothness in L,, that is, Theorem 2.1, Corollary
2.2 and Theorem 6.1 are optimal. For L,, p#2 the results we have are not optimal.
However, we will show below how for p near 2 we can obtain results close to those

for p = 2. It follows from Theorem 3.1 that for m>%, ASg’f exists in L;. We

will show that Sy f does not satisfy any smoothness property in L. Similar results
are valid for V, f.

We define for K,(f,A, "), given in (5.7)

A L2
{f:supwqm} = LS, (7.1)
>0

and the definition does not depend on r as long as 2r>u.
We can now state and prove the following result.

Theorem 7.1. For 1<p<oo and 0<0<Z%, feL,(S*") implies SpfeL, (S"") with
oy, = (d —2)|1 —Il]|f0rp<2, ap = (d —2)/p for p=2 and

K,(Suf. A, 2, <Coen 1], (72)

with C independent of t and 6.
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1 x<%

0 x>1 and we denote 1;(x) =

Proof. We set n(x)e C* |0, oo) such that (x) = {
n(35). For feL,(S7"), O;f given by

O f ~ (%) P(f) (7.3)
are multiplier operators which satisfy

10,1, <CIIf N, 1<p<oo, j=0,1,.. A)
and

Ei(f),<If = Oifll,<CEyi(f),, 1<p<oo, j=12, .., (B)
where

E,(f), =inf(|][f — P||,; P spherical harmonic of degree <n).

In fact, in our proof, any bounded sequence of multiplier operators satisfying (A)
and (B) can replace O;. (For instance, any delayed means V; generated by some
Riesz means as discussed in [Ch-Di].) We now set 7;f = O, f — O;_, f for j=1 and
T, f = Oy f. We show now that for 1<p< oo and 2r>pf

T3 /11, K(f, A, ) T /1,
C 'sup <su < Csup : 7.4
_/>1 2 S5 # j>1 Pl (7.4)
The first inequality follows as ||7}f|[,<AEy;1(f), and E,(f), is bounded by

K.(f, A, n*2")p (see for instance [Ch-Di, (8.8)]). The second implication follows from

Ey(1), <1 = 0 1,< 3 171}, <427 sup (||2/{ﬂ| )

(=j+1

with 4 depending on f (but not on j or f), and the estimate of K,(f,&, 12’)[] by
E,,(f)p (see for instance [Ch-Di, (8.9)]). We now observe that for p =1

T3 (So NI <10;(So Nl + 11051 (So NIl <2CNSu /1l <2C[ 111
For p =2 we use || T;(So.f)|l, <AE,;1(So f),, and as

1(0K) 220 (cos 0)| < C for all k,
we have ||(—A)? /4ng||2<2C9 (@=272|| 7|, and hence (see [Di-II, Theorem 4.1
and also A, p. 343]) Ey(Spf), < C10~ @ 2/2271d=212| 71,

As T; and Sy are linear operators, we may use the Riesz-Thorin theorem to obtain

||Tngf||p<CB*""’2*/"1P||f||[7 with o, = (d —2)(1 — ) for 1 <p<2. For 2<g< o0 we
get the same result by duality and o, = «, for % + é =1. O

We cannot show that for 1 <p<2 (or for 2<p< o) Theorem 7.1 is best possible
and it probably is not. For p =2 Theorem 7.1 is best possible and we will show
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below that for p =1 (and hence by duality for p = o0) Theorem 7.1 cannot be
improved either.

Theorem 7.2. There exists feLi(SY") such that (—A)*Syf¢Li(S*") for any
positive o.

Remark 7.3. We note that using Theorem 3.1, we established that for

d N
m>2([d2# ASrfeLi(S%"), and in particular if d>10, we have

AS}feL(S?"), which makes Theorem 7.2 somewhat intriguing.
First we state the Nikolskii inequality for spherical polynomials.

Lemma 7.4. For P,, a spherical polynomials of degree smaller or equal to n on
S (that is, Pyespan(\Ji_, Hy) where Hy = {: Ay = —k(k +d — 2)y}), and
0<g<p< oo we have

(d—1

)1
[Pul|,<Cn™ "0 P[Py - (7.5)

Proof. While we found a Ref. [Ka] for the part of the result which we need i.e. when
g>1, we give below a short proof of (7.5). We choose integer r>4%. P,(x)" is a
spherical polynomials of degree nr. We write

n dj.
Pn(X)r = [g; 1 Pn(y)’ Z Yk}/(.x) Yk/(y) dy = /Si 1 Pn(y), Gnr(x . y) dy7
‘d— k 71 'd—

=0 /=

where {Yk,/}‘/l":l is any orthonormal system in H;. We now have

r r—q/2 2
1Pl < P [ 1A Go- )

12
<wwyﬂmW(ﬂQMwW@).

As fSII,I(Gn,(x-y))zdy is independent of x, it is equal to ﬁZZ’:O dim Hy ~n?1,
and the proof of (7.5) when p = oo follows.
To complete the proof we recall for g<p< oo, |\f||p<||f||Z/prHL;"/”. O

Lemma 7.5. If (-A)" feL,, (a<1), then f e L, for 1 <p<p() =l

Proof. Recall 7; from the proof of Theorem 7.1, and following [Di-II,
Theorem  4.1], ||Tj||,<CEyii(f),<Ci27%*. Using Lemma 7.4 with

1
g=1, [T}, <C:222) "D and if 20>(d—1)(1-1) or p<gicl
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IS5 Tl < ST, < 0. As [|Toll, <ClIfl and 7% T; =, we complete the
proof. [

Proof of Theorem 7.2. In view of Lemma 7.5 it is sufficient to construct a function
S €Li(S97") such that Sy f ¢ L,(S?"") for any p> 1. Our strategy is to use f,(x) >0 so
that Sy f,>0. We then set f(x) = > - f,(x), which implies [|Syf1],>:5[1So full,

and show that sup, 5 ||Soful|, = oo for any p>1. To do that we write

1 t=cos9,

7.6
0 r<coso. (7.6)

Jol) = 27600 (x - 2,), wm{

In fact, z, are immaterial and we can choose z, = z if we wish. Clearly || f,||, < C and

1
feLi(S7") while ||_ﬁ1||pz2n(d71)(171’) and f ¢ L,(S?"!) for p>1. We will now show
that for 0> #n>0, for example 6> 10n>0 (but as n takes the role of 27", we could
have a much larger ratio)

m(y:y-x=cos,y-z=cosn)=Cni 2,
i cos(0+9)<x- 2cos( ) )
with C independent of #. As m{x:cos(0+%)<x-z<cos(0 — %)}%Qd—zn the

demonstration of (7.7) will complete the proof of our theorem setting n = 27"
(and any fixed 0) and obtaining
§ld-2)/p

1
—([(2~™" (d*Z)Zn(dfl) 110(172241 l/pz
e por-ynyn s L2

1 n(1-d)
S ISofall, 20,
Hence, it remains only to prove (7.7). We observe that if cos(0 —%)<x-z<
cos(0 — g), then there exists zy such that zg - z>cos% and x - zg = cos 0. This follows
since in the plane containing the vectors x and z, the angle between them has to be

increased or decreased by less than 4 to get zp. The measure m(y:y-x =cos0,y-
Z9=>c0s8 3,20 - X = cos () can be calculated to behave like 742 Our result follows as

{yiy'XZZo~x:cos6,y-20>cosg}
c{y :y-x:COSQ,y-zo>cosg,cos(9+g)<zo -x<cos(9—g)}

c{y:y-x=cosb,y-z=cosn,cos(0 +n<x-z<cos(d —yu)}. O
We also have the (slightly simpler to prove) analogues in R? (or T9).

Theorem 7.6. For 1<p<ow, feL, (L,(TY) or L,(RY)) implies V,feL, with
o, = (d—1)|1 —%| if p<2and o, = (d —1)/p for p=2 where

K.(f, A u*
L= {f;sup(fua)p<oo}, 2r>o

u>0
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and
K(f, A7), = igf(\lf —gll, + 7 l|Agl[,)-

Moreover,

K (Vo f . 0u™), <Cronur || £, (7.8)

Theorem 7.7. There exists f € Ly such that (—A)*V, f¢ Ly for any positive o.

Remark 7.8. Theorems 7.6 and 7.7 are similar and perhaps easier to prove than
Theorems 7.1 and 7.2. We may prove these theorems first for 7¢ and deduce them
for R? or vice versa. Analogues of Lemmas 7.4 and 7.5 for T¢ and trigonometric
polynomials of deg n are easy to prove and perhaps better known than Lemmas 7.4
and 7.5. We did not give the proofs explicitly to avoid duplication.

Remark 7.9. In Theorems 7.1 and 7.2 the space Lj appears to characterize

smoothness. The same situation occurs if we use the new modulus of smoothness
introduced in [Di-I], that is

" (f,1), = sup{HA:,"f’

; PX - X=Cost, peSO(d)} (7.9)
P

or if we use best spherical harmonic approximation. The above follows from the fact
that for 1<p<

" (f,1),=0(") for m>a,

K.(f, A, lz")p = 0(") for 2r>u

£, =0(;5)

are all equivalent (see [Di-III]).

and

It is in some more sensitive conditions that the concepts £, (f),, K (/f, A, ZZ’)F and
w™(f,1), may differ.
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